Quarkonium Binding and Dissociation in Deconfined Media

Helmut Satz
Universität Bielefeld, Germany
Statistical QCD: ∃ deconfinement transition, QGP

How to probe QGP?

• e-m signals (real or virtual photons)
• quarkonia ($Q\bar{Q}$ pairs)
• jets (fast partons)

Ultimate aim: ab initio calculation of in-medium behaviour of probes
Statistical QCD: ∃ deconfinement transition, QGP

How to probe QGP?

- e-m signals (real or virtual photons)
- quarkonia ($Q\bar{Q}$ pairs)
- jets (fast partons)

Ultimate aim: *ab initio* calculation of in-medium behaviour of probe

High Energy Nuclear Collisions:

experimental study of deconfinement transition, QGP

Ultimate aim: show that experimental results verify the in-medium predictions of statistical QCD
Statistical QCD: ∃ deconfinement transition, QGP

How to probe QGP?
• e-m signals (real or virtual photons)
• quarkonia (Q\bar{Q} pairs)
• jets (fast partons)

Ultimate aim: *ab initio* calculation of in-medium behaviour of probe

High Energy Nuclear Collisions:

experimental study of deconfinement transition, QGP

Ultimate aim: show that experimental results verify the in-medium predictions of statistical QCD

⇒ spectral analysis of quarkonia in QGP ⇐
Theoretical basis:

- QGP consists of deconfined colour charges, hence there exists colour charge screening for $Q\bar{Q}$ probe.
- Screening radius $r_D(T)$ decreases with temperature T.
- When $r_D(T)$ falls below binding radius r_i of $Q\bar{Q}$ state i, Q and \bar{Q} cannot bind, quarkonium i cannot exist.
- Quarkonium dissociation points T_i, through $r_D(T_i) = r_i$, specify temperature of QGP.
Experimental basis:

- measure quarkonium production in AA collisions as function of collision energy, centrality, A
- determine onset of (anomalous) suppression for the different quarkonium states
- correlate experimental onset points to thermodynamic variables (temperature, energy density)
- compare thresholds in survival probabilities S_i of states i to QCD predictions

\Rightarrow direct comparison: experimental results vs. quantitative QCD predictions
In-Medium Behaviour of Quarkonia: Theory

Quarkonia:
heavy quark bound states stable under strong decay

heavy: charm ($m_c \simeq 1.3$ GeV) or beauty ($m_b \simeq 4.7$ GeV)

stable: $M_{c\bar{c}} \leq 2M_D$ and $M_{b\bar{b}} \leq 2M_B$

heavy quarks \Rightarrow quarkonium spectroscopy via
non-relativistic potential theory

Schrödinger equation
\[
\left\{2m_c - \frac{1}{m_c} \nabla^2 + V(r)\right\} \Phi_i(r) = M_i \Phi_i(r)
\]

confining (“Cornell”) potential
\[
V(r) = \sigma r - \frac{\alpha}{r}
\]

string tension $\sigma \simeq 0.2$ GeV2, gauge coupling $\alpha \simeq \pi/12$

\Rightarrow quarkonium masses M_i and radii r_i
⇒ good account of quarkonium spectroscopy

<table>
<thead>
<tr>
<th>state</th>
<th>J/ψ</th>
<th>χ_c</th>
<th>ψ'</th>
<th>Υ</th>
<th>χ_b</th>
<th>Υ'</th>
<th>χ'_b</th>
<th>Υ''</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔE [GeV]</td>
<td>0.64</td>
<td>0.20</td>
<td>0.05</td>
<td>1.10</td>
<td>0.67</td>
<td>0.54</td>
<td>0.31</td>
<td>0.20</td>
</tr>
<tr>
<td>ΔM [GeV]</td>
<td>0.02</td>
<td>-0.03</td>
<td>0.03</td>
<td>0.06</td>
<td>-0.06</td>
<td>-0.06</td>
<td>-0.08</td>
<td>-0.07</td>
</tr>
<tr>
<td>radius [fm]</td>
<td>0.25</td>
<td>0.36</td>
<td>0.45</td>
<td>0.14</td>
<td>0.22</td>
<td>0.28</td>
<td>0.34</td>
<td>0.39</td>
</tr>
</tbody>
</table>

NB: error in mass determination ΔM is less than 1 %

Ground states:

tightly bound $\Delta E = 2M_{D,B} - M_0 \gg \Lambda_{QCD}$, small $r_0 \ll r_h$

What happens to binding in QGP?
Colour screening ⇒ binding becomes weaker and of shorter range

when force range/screening radius become less than binding radius, Q and \bar{Q} cannot “see” each other
⇒ quarkonium dissociates

⇒ quarkonium dissociation points determine temperature, energy density of medium

How to calculate quarkonium dissociation temperatures?

• Model heavy quark potential $V(r, T)$, solve Schrödinger equation:

 Karsch et al. 1988
 Digal et al. 2001

 $T_{J/\psi} \gtrsim T_c$, T_χ & $T_{\psi'} \lesssim T_c$
• Determine heavy quark potential $V(r, T)$ in finite T lattice QCD, solve Schrödinger equation

<table>
<thead>
<tr>
<th>state</th>
<th>$J/\psi(1S)$</th>
<th>$\chi_c(1P)$</th>
<th>$\psi'(2S)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_d/T_c</td>
<td>2.10</td>
<td>1.16</td>
<td>1.12</td>
</tr>
</tbody>
</table>

Shuryak & Zahed 2004
Wong 2004, 2005
Alberico et al. 2005
Digal et al. 2005
Mocsy & Petreczky 2005, 2006

• Calculate quarkonium spectrum in finite T lattice QCD

<table>
<thead>
<tr>
<th>state</th>
<th>$J/\psi(1S)$</th>
<th>$\chi_c(1P)$</th>
<th>$\psi'(2S)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_d/T_c</td>
<td>≥ 2.0</td>
<td>< 1.1</td>
<td>?</td>
</tr>
</tbody>
</table>

charmonia quenched:
Umeda et al. 2001
Asakawa & Hatsuda 2004
Datta et al. 2004
Iida et al. 2005

charmonia unquenched:
Morrin et al. 2005
bottomonia quenched
Datta et al. 2005
Velytsky et al. 2006

$T_\Upsilon \gtrsim 2 \ T_c$, $T_{\chi_b} \lesssim 1.15 \ T_c$ [?]
$\Rightarrow J/\psi, \ Upsilon$ survive up to $T \geq 2 \ T_c \Rightarrow \epsilon_{J/\psi} \geq 25 \ \text{GeV/fm}^3$

$\Rightarrow \chi_c$ and ψ' melt near $T_c \Rightarrow \epsilon_{\psi',\chi} \simeq 0.5 - 2 \ \text{GeV/fm}^3$

Caveat: survival, but with what modifications?
- radii, binding, widths, continuum as $f(T)$?

compare lattice & potential studies: Mocsy & Petreczky 2006
- for which temperatures, for which variables do potential models provide a good approximation to reality?
- modify screened binding to include $\Gamma(T)$, decreasing continuum threshold?

What were the new theory inputs for increased $T_{\text{diss}}(J/\psi)$?

- colour singlet free energy in lattice QCD
- free \rightarrow internal energy in potential models
- direct finite T lattice calculations for quarkonia
In-Medium Behaviour of Quarkonia: Phenomenology

J/ψ production in AA collisions:

- observed modifications due to
 - cold nuclear matter of target and projectile
 - secondary medium produced in collision

- observed J/ψ production contains
 - directly produced $1S$ states
 - decay products from $\chi_c(1P)$ and $\psi'(2S)$ production
In-Medium Behaviour of Quarkonia: Phenomenology

J/ψ production in AA collisions:

- observed modifications due to
 - cold nuclear matter of target and projectile
 - secondary medium produced in collision

- observed J/ψ production contains
 - directly produced $1S$ states
 - decay products from $\chi_c(1P)$ and $\psi'(2S)$ production

Operational solution:

- identify effects due to cold nuclear matter by
 - pA or dA studies
 - Glauber analysis in terms of σ^{i}_{abs} for $i=J/\psi$, χ_c, ψ'
 includes initial & final state effects: shadowing, parton energy loss, pre-resonance/resonance absorption – different dependence on A, centrality?
• for AA collisions, use σ_{abs}^i and Glauber analysis to
 – obtain prediction for normal J/ψ suppression
 – identify anomalous J/ψ suppression
 – parametrize through survival probability

$$S_i = \frac{(dN_i/dy)_{\text{exp}}}{(dN_i/dy)_{\text{Glauber}}} \quad \text{for quarkonium state } i$$

• assume J/ψ origin in pA and AA same as in pp:
 – 60 % direct $1S$, 30 % decay of $1P$, 10 % decay of $2S$
 – NB: could this be checked experimentally?

If AA collisions produce a fully equilibrated QGP:

$$\Rightarrow \text{sequential suppression of } J/\psi, \Upsilon \Leftarrow$$

$$\Rightarrow \text{thresholds predicted by statistical QCD} \Leftarrow$$
Sequential J/ψ suppression:

Karsch & HS 1991
Gupta & HS 1992
Digal et al. 2001
Karsch, Kharzeev & HS 2005

If $J/\psi(1S)$ survives up to $2T_c \sim \epsilon \geq 25 \text{ GeV/fm}^3$:

- all anomalous suppression observed at SPS and RHIC due to dissociation of excited states χ_c and ψ'
- onset of anomalous suppression at $\epsilon(T_c) \simeq 1 \text{ GeV/fm}^3$
- J/ψ survival probability for central $Au - Au$ collisions at RHIC same as for central $Pb - Pb$ collisions at SPS
Cross-check: J/ψ transverse momentum behaviour

- initial state parton scattering causes p_T broadening of charmonia; random walk in pA collisions →

$$\langle p_T^2 \rangle_{pA} = \langle p_T^2 \rangle_{pp} + N_c^A \delta_0$$

N_c^A number of collisions before parton fusion to $c\bar{c}$ (Glauber, include σ_{abs})

δ_0 kick per collision, determined in pA

- in AA collisions, initial state parton scatterings in target & projectile; random walk →

$$\langle p_T^2 \rangle_{AA} = \langle p_T^2 \rangle_{pp} + N_c^{AA} \delta_0$$
N_{c}^{AA} total number of collisions in target and projectile before $c\bar{c}$ fusion (again Glauber, include σ_{abs})

- If observed J/ψ in central AA collisions undisturbed $J/\psi(1S)$, centrality dependence of p_T broadening fully predicted by initial state parton scattering

Karsch, Kharzeev, HS 2005
Borges, Lourenço, Thews, HS - in progress

Expected Behaviour for SPS and RHIC Experiments:
Conclude: Present results are compatible with equilibrium QGP formation

NB: this is NEW and largely due to the following TH & EX changes

- finite T lattice QCD suggests (caveat: width) direct J/ψ suppression at energy densities beyond RHIC range; previous TH onset values much lower

- SPS $In - In$ data suggest onset of anomalous suppression at $\epsilon \simeq 1 \text{ GeV/fm}^3$; previous EX onset values much higher, $2 - 2.5 \text{ GeV/fm}^3$

- within statistics, no further drop of survival rate below 50 - 60 %; second drop in SPS $Pb - Pb$ no longer claimed
Conclude: Present results are compatible with equilibrium QGP formation

NB: this is NEW and largely due to the following TH & EX changes

- finite T lattice QCD suggests (caveat: width) direct J/ψ suppression at energy densities beyond RHIC range; previous TH onset values much lower

- SPS $In - In$ data suggest onset of anomalous suppression at $\epsilon \simeq 1$ GeV/fm3; previous EX onset values much higher, $2 - 2.5$ GeV/fm3

- within statistics, no further drop of survival rate below 50 - 60%; second drop in SPS $Pb - Pb$ no longer claimed

But: \exists alternative account of results?

Crucial aspect of QGP J/ψ suppression:

dissociated charmonia never “recreated” in hadronizing QGP, since thermal c/\bar{c} abundance negligible

non-thermal c/\bar{c} production?
thermal charm production:

\[
\frac{c\bar{c}}{q\bar{q}} \simeq \exp\left\{-\frac{m_c}{T_c}\right\} \simeq 6 \times 10^{-4}
\]

with \(m_c = 1.3 \text{ GeV} \), \(T_c = 0.175 \text{ GeV} \)

initial charm production is hard process \(\sim N_{\text{coll}} \)

\(u, d, s \) production \(\sim N_{\text{part}} \)

in \(AA \) collisions \((A = 200) \)

initial exceeds thermal rate

what happens to excess in evolution?
Regeneration Scenario

Basic Input:
Braun-Munzinger & Stachel 2001; Thews et al. 2001;
Grandchamps and Rapp 2002

- increased collision energy \rightarrow increased initial charm content in produced system
- assume the charm excess survives the subsequent evolution (chemical non-equilibrium)
- c or \bar{c} from a given nucleon-nucleon collision can at hadronization bind with charm constituents from different collisions (“off-diagonal” pairs)
 \exists new exogamous charmonium production mechanism;
 c and \bar{c} in such charmonia have different parents, in contrast to endogamous production in pp

High energy \Rightarrow enhanced J/ψ production in $AA \rightarrow pp$
When does this set in?

Present work assumes

- direct J/ψ production strongly suppressed for $\epsilon \geq 3$ GeV/fm3 (in contrast to lattice results)
- statistical combination of all $c\bar{c}$ (with or without wave function correction)
- at RHIC energy, new exogamous J/ψ just compensate drop of direct endogamous rate; at LHC, off-diagonal production $\rightarrow J/\psi$ enhancement

How to distinguish between
- sequential suppression in equilibrium QGP and
- J/ψ regeneration by charm increase?
• overall J/ψ survival: suppression vs. enhancement at high energy densities

• p_T behaviour:
 initial state parton scattering vs. final state charm production

Karsch, Kharzeev & HS 2005
Mangano & Thews 2005

• in general, regeneration \rightarrow quarkonium momentum distributions \sim convolution of open charm momenta

Mangano & Thews 2005
Conclusions
Conclusions

• in statistical QCD, the spectral analysis of quarkonia provides a well-defined way to determine temperature and energy density of the QGP
Conclusions

• in statistical QCD, the spectral analysis of quarkonia provides a well-defined way to determine temperature and energy density of the QGP

• if nuclear collisions produce an equilibrium QGP, the study of quarkonium production provides a direct way to connect experiment and statistical QCD
Conclusions

• in statistical QCD, the spectral analysis of quarkonia provides a well-defined way to determine temperature and energy density of the QGP

• if nuclear collisions produce an equilibrium QGP, the study of quarkonium production provides a direct way to connect experiment and statistical QCD

• for a QGP with surviving charm excess, off-diagonal quarkonium formation by statistical combination may destroy this connection
ε [GeV/fm3]

- **Pb−Pb $S(J/\psi)$**
- **In−In $S(J/\psi)$**
- **Pb−Pb $0.4 S(\psi') + 0.6$**