Analysis of charmonium production at fixed-target experiments

J. Spengler, DESY, Hamburg

This analysis was performed by F. Maltoni + several members of the HERA-B collaboration

Outline:

1. Motivation
2. J/ψ cross section measured at HERA-B
3. Compilation of all pA J/ψ and Ψ(2S) cross sections
4. The NRQCD approach
5. Fit results
1. Motivation:

Expt. view: HERA-B uses a dilepton trigger $B \rightarrow J/\Psi, \chi_c \rightarrow J/\Psi, \Psi(2S) \rightarrow J/\Psi$ are normalized to $J/\Psi \rightarrow$ dileptons to reduce sys. errors. Thus a precise J/Ψ cross section is required:

a) Measure J/Ψ in minimum bias data

b) Global fit to all J/Ψ cross section measurements

Theo. view: test universality of non-perturbative matrix elements of quarkonia
2. J/Ψ cross section at HERA-B:

- Interactions of 920 GeV protons on C, Ti and W targets (180M events)
- Minimum bias trigger with >97% efficiency
- $pA \rightarrow J/\Psi \ X$ with $J/\Psi \rightarrow e^+e^- \ or \ \mu^+\mu^-$
- Visible fraction of total cross section = 63%
- Expect low sys. error; result dominated by stat. error despite huge statistics
$100\pm12 \ J/\Psi \rightarrow \mu^+\mu^-$

$57+13 \ J/\Psi \rightarrow e^+e^-$
1. Combine both final states for each target
2. Determine pA cross sections for A = C, Ti, W
3. Determine pN cross section by fitting

\[\sigma_{pN} = \sigma_{pA} \cdot A^\alpha \]

using \(\alpha = 0.96 \pm 0.01 \) at \(x_F \approx 0 \) (E866 result). Most precise measurement available.

Final result: \(\sigma_{pN} = 663 \pm 74 \pm 46 \) nb/nucleon

Published in Phys. Lett. B, in press

Updates applied to all data:

a) Assume the same target mass dependence A^α
b) Assume symmetric x_F dependence
c) Update for PDG04 branching ratios
d) Combine different targets of same experiment
e) Assume that sys. error quoted includes all contributions (Br, A-dependence)
Mid-rapidity and total cross sections in pN reactions:

Several measurements are not compatible.

Detailed tables can be found in the paper.

HQQW06 at BNL J. Spengler
4. The NRQCD approach:
NRQCD expresses the cross section for a quarkonium state in pp interactions in NLO as product of short-distance coefficient * long-distance matrix element. Here we need the direct production σ^D of J/ψ, χ_{cJ} and $\psi(2S)$.

$$\sigma(\Psi(2S)) = \sigma^D(\Psi(2S))$$

$$\sigma(J / \Psi) = \sigma^D(J / \Psi) + \sum_{J=0}^{2} Br(\chi_{cJ} \rightarrow J / \Psi\gamma) \cdot \sigma^D(\chi_{cJ}) + Br(\Psi(2S) \rightarrow J / \Psi X) \cdot \sigma^D(\Psi(2S))$$

$$R_\Psi = \sigma(J / \Psi) / \sigma(\Psi(2S))$$
Choices to be made:

1. Scale parameter: $\mu_0 = 2m_c$ with $m_c = 1.5$ GeV
 $\mu_0 = \mu_F(\text{factorization}) = \mu_R(\text{renormalization})$

2. PDF sets: MRST2002nlo and CTEQ6m

3. Color-singlet matrix elements from potential model calculations

4. Color-octet matrix elements extracted from CDF data (based on LO calculations only)

Introduce free scaling parameters for S-wave color-octet ME
$\lambda_{J/\Psi}$ and $\lambda_{\Psi(2S)}$
= fraction of color-octet contribution required relative to CDF results
Matrix elements used for fit:

<table>
<thead>
<tr>
<th>H</th>
<th>$\langle \mathcal{O}_{1}^{H} \rangle$</th>
<th>$\langle \mathcal{O}{8}^{H(3S{1})} \rangle$</th>
<th>$\langle \mathcal{O}{8}^{H(1S{0})} \rangle$</th>
<th>$\langle \mathcal{O}{8}^{(3P{0})} \rangle / m_{c}^{2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>J/Ψ</td>
<td>1.16 GeV3</td>
<td>$1.19 \cdot 10^{-2}$ GeV3 · $\lambda_{J/\Psi}$</td>
<td>$1.0 \cdot 10^{-2}$ GeV3 · $\lambda_{J/\Psi}$</td>
<td>$1.0 \cdot 10^{-2}$ GeV3</td>
</tr>
<tr>
<td>$\Psi(2S)$</td>
<td>0.76 GeV3</td>
<td>$0.50 \cdot 10^{-2}$ GeV3 · $\lambda_{\Psi(2S)}$</td>
<td>$0.42 \cdot 10^{-2}$ GeV3 · $\lambda_{\Psi(2S)}$</td>
<td>$0.42 \cdot 10^{-2}$ GeV3</td>
</tr>
<tr>
<td>χ_{c0}</td>
<td>0.11 GeV5</td>
<td>$0.31 \cdot 10^{-2}$ GeV3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

$\langle \mathcal{O}_{8}^{\Psi}(3P_{J}) \rangle = (2J + 1) \langle \mathcal{O}_{8}^{\Psi}(3P_{0}) \rangle$

$\langle \mathcal{O}_{8}^{\chi_{cJ}(3S_{1})} \rangle = (2J + 1) \langle \mathcal{O}_{8}^{\chi_{c0}(3S_{1})} \rangle$

$\langle \mathcal{O}_{8}^{\chi_{cJ}(3P_{J})} \rangle = (2J + 1) \langle \mathcal{O}_{8}^{\chi_{c0}(3P_{0})} \rangle$
5. Fit results:

Data available: 21 results on J/ψ, 3 on $\psi(2S)$ and 5 on R_ψ.

1. step: fit scale factor “x” common to all states

$\mu_F = \mu_R = x \cdot \mu_0$ for both PDF sets

2. step: fit $\lambda_{J/\psi}$ and $\lambda_{\psi(2S)}$ for both PDF sets

<table>
<thead>
<tr>
<th></th>
<th>MRST2002nlo</th>
<th>CTEQ6m</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu_F = \mu_R$</td>
<td>1.5 μ_0</td>
<td>2.6 μ_0</td>
</tr>
<tr>
<td>χ^2/dof</td>
<td>114 / 27</td>
<td>170 / 27</td>
</tr>
<tr>
<td>$\lambda_{J/\psi}$</td>
<td>0.089±0.013</td>
<td>0.211±0.027</td>
</tr>
<tr>
<td>$\lambda_{\psi(2S)}$</td>
<td>0.061±0.012</td>
<td>0.112±0.017</td>
</tr>
</tbody>
</table>
Comments:

- Large χ^2/dof \rightarrow error on λ scaled (PDG)
- Differences in λ due to different scaling factors
- Stability of fits was tested by
 - Excluding results with bad partial χ^2
 - Changing the cms-energy range
 - Excluding targets with $A>14$

 \Rightarrow Fit results very stable. Only significant changes in λ due to PDF and scaling factors

- Select MRST2002nlo as baseline (smaller χ^2)
NRQCD “prediction” of $d\sigma/dy$ at $y=0$:

12 (out of 23) data points partially correlated with previous fits
Conclusions:

For both PDF’s and all fits we obtain:

\[0.01 < \lambda_{J/\Psi} < 0.31 \] and \[0.02 < \lambda_{\psi(2S)} < 0.14 \]

Required color-octet contribution about 10% of that for Tevatron data. Supports HERA ep data which do not need large octet contributions.

- Difference too large to be due to LO calc. for Tevatron analysis
- Missing NLO calc. of short-distance coeff. for color-singlet production can decrease octet contri. as observed in photoproduction