Quarkonium correlators and spectral functions from anisotropic lattices

Alexander Velytsky

Physics and Astronomy Department
UCLA

27 June 2006 / hq2006
References

Work in collaboration with A. Jakovac (Budapest, Tech. U.), P. Petreczky (Brookhaven) and K. Petrov (Bohr Inst).

- hep-lat/0603005
Outline

1. Introduction
 - Meson Correlators and Spectral Functions
 - Reconstruction of the Spectral Function
 - Simulation parameters, lattices

2. Charmonium
 - Zero Temperature
 - Finite Temperature

3. Bottomonium

4. Summary
Point meson operator

\[J_H(t, x) = \bar{q}(t, x) \Gamma_H q(t, x), \]

where \(\Gamma_H = 1, \gamma_5, \gamma_\mu, \gamma_5 \gamma_\mu, \gamma_\mu \gamma_\nu. \)

Meson states in different channels:

<table>
<thead>
<tr>
<th>(\Gamma)</th>
<th>(^2S+1L_J)</th>
<th>(J^{PC})</th>
<th>(c\bar{c}) (n=1)</th>
<th>(c\bar{c}) (n=2)</th>
<th>(b\bar{b}) (n=1)</th>
<th>(b\bar{b}) (n=2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma_5)</td>
<td>(^1S_0)</td>
<td>0--</td>
<td>(\eta_c)</td>
<td>(\eta_c')</td>
<td>(\eta_b)</td>
<td>(\eta_b')</td>
</tr>
<tr>
<td>(\gamma_s)</td>
<td>(^1S_1)</td>
<td>0--</td>
<td>(\gamma / \psi)</td>
<td>(h_c)</td>
<td>(\Upsilon(1S))</td>
<td>(h_b)</td>
</tr>
<tr>
<td>(\gamma_s \gamma_s')</td>
<td>(^1P_1)</td>
<td>0--</td>
<td>(\chi_{c0})</td>
<td>(\chi_{c1})</td>
<td>(\omega_{bc}(1P))</td>
<td>(\chi_{b0}(2P))</td>
</tr>
<tr>
<td>1</td>
<td>0--</td>
<td>(\chi_{c2})</td>
<td>(\chi_{b1}(1P))</td>
<td>(\chi_{b2}(1P))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\gamma_5 \gamma_s)</td>
<td>(^3P_0)</td>
<td>0--</td>
<td>(\chi_{c0})</td>
<td>(\chi_{c1})</td>
<td>(\omega_{bc}(1P))</td>
<td>(\chi_{b0}(2P))</td>
</tr>
<tr>
<td>2++</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Point meson operator

\[J_H(t, x) = \bar{q}(t, x) \Gamma_H q(t, x), \]

where \(\Gamma_H = 1, \gamma_5, \gamma_\mu, \gamma_5 \gamma_\mu, \gamma_\mu \gamma_\nu. \)

Meson states in different channels:

<table>
<thead>
<tr>
<th>(\Gamma)</th>
<th>(^{2S+1}L_J)</th>
<th>(J^{PC})</th>
<th>(c\bar{c}) (n=1)</th>
<th>(c\bar{c}) (n=2)</th>
<th>(b\bar{b}) (n=1)</th>
<th>(b\bar{b}) (n=2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma_5)</td>
<td>(^1S_0)</td>
<td>0(^--)</td>
<td>(\eta_c)</td>
<td>(\eta_c')</td>
<td>(\eta_b)</td>
<td>(\eta_b')</td>
</tr>
<tr>
<td>(\gamma_s)</td>
<td>(^3S_1)</td>
<td>1(^--)</td>
<td>(J/\psi)</td>
<td>(\psi')</td>
<td>(\Upsilon(1S))</td>
<td>(\Upsilon(2S))</td>
</tr>
<tr>
<td>(\gamma_s \gamma_s')</td>
<td>(^1P_1)</td>
<td>1(^+-)</td>
<td>(h_c)</td>
<td>(\chi_{c0})</td>
<td>(h_b)</td>
<td>(\chi_{b0}(1P))</td>
</tr>
<tr>
<td>1</td>
<td>(^3P_0)</td>
<td>0(^++)</td>
<td>(\chi_{c1})</td>
<td>(\chi_{b0}(2S))</td>
<td>(\chi_{b1}(1P))</td>
<td>(\chi_{b1}(2P))</td>
</tr>
<tr>
<td>(\gamma_5 \gamma_s)</td>
<td>(^3P_1)</td>
<td>1(^++)</td>
<td>(\chi_{c2})</td>
<td>(\chi_{b2}(1P))</td>
<td>(\chi_{b2}(2P))</td>
<td></td>
</tr>
</tbody>
</table>
The spectral function
\[
\sigma_H(p_0, \vec{p}) = \frac{1}{2\pi} (D_H^>(p_0, \vec{p}) - D_H^<(p_0, \vec{p})) = \frac{1}{\pi} \text{Im} D_H^R(p_0, \vec{p})
\]

\[
D_H^>(<)(p_0, \vec{p}) = \int \frac{d^4p}{(2\pi)^4} e^{i\vec{p} \cdot \vec{x}} D_H^>(<)(x_0, \vec{x})
\]

\[
D_H^>(x_0, \vec{x}) = \langle J_H(x_0, \vec{x}), J_H(0, \vec{0}) \rangle
\]

\[
D_H^<(x_0, \vec{x}) = \langle J_H(0, \vec{0}), J_H(x_0, \vec{x}) \rangle, x_0 > 0
\]

The Euclidean propagator
\[
G_H(\tau, \vec{p}) = \int d^3xe^{i\vec{p} \cdot \vec{x}} \langle T_\tau J_H(\tau, \vec{x}) J_H(0, \vec{0}) \rangle
\]
is related to the spectral function through the integral representation
\[
G(\tau, \vec{p}) = \int_0^\infty d\omega \sigma K(\omega, \tau), \quad K(\omega, \tau) = \frac{\cosh(\omega(\tau - 1/2T))}{\sinh(\omega/2T)}.
\]
The spectral function

\[\sigma_H(p_0, \vec{p}) = \frac{1}{2\pi} (D^>_H(p_0, \vec{p}) - D^<_H(p_0, \vec{p})) = \frac{1}{\pi} \text{Im}D^R_H(p_0, \vec{p}) \]

\[D^>_H(\langle \rangle)(p_0, \vec{p}) = \int \frac{d^4p}{(2\pi)^4} e^{ip.x} D_H^>(\langle \rangle)(x_0, \vec{x}) \quad (1) \]

\[D_H^>(x_0, \vec{x}) = \langle J_H(x_0, \vec{x}), J_H(0, \vec{0}) \rangle \]

\[D_H^<(x_0, \vec{x}) = \langle J_H(0, \vec{0}), J_H(x_0, \vec{x}) \rangle, x_0 > 0 \quad (2) \]

The Euclidean propagator

\[G_H(\tau, \vec{p}) = \int d^3x e^{i\vec{p}.\vec{x}} \langle T_\tau J_H(\tau, \vec{x}) J_H(0, \vec{0}) \rangle \]

is related to the spectral function through the integral representation

\[G(\tau, \vec{p}) = \int_0^\infty d\omega \sigma K(\omega, \tau), \quad K(\omega, \tau) = \frac{\cosh(\omega(\tau - 1/2T))}{\sinh(\omega/2T)} \]
Reconstruction of the Spectral Function

\[G(\tau, \vec{p}) = \int_0^\infty d\omega \sigma(\omega, T) K(\omega, \tau, T) \]

- \(O(10)\) data and \(O(100)\) degrees of freedom to reconstruct.
- Bayesian technique: find \(\sigma(\omega, T)\) that maximizes \(P[\sigma|DH]\).
 - \(D\) data
 - \(H\) prior knowledge: \(\sigma(\omega, T) > 0\)

Maximum Entropy Method: Asakawa, Hatsuda, Nakahara, PRD 60 (99) 091503, Prog. Part. Nucl. Phys. 46 (01) 459

\[P[\sigma|DH] = \exp\left(-\frac{1}{2} \chi^2 + \alpha S\right) \]

Shannon-Janes entropy: \(S = \int d\omega \left[\sigma(\omega) - m(\omega) - \sigma(\omega) \ln\left(\frac{\sigma(\omega)}{m(\omega)}\right)\right]\),

\(m(\omega)\) - the default model, \(m(\omega \gg \Lambda_{QCD}) = m_0 \omega^2\) - perturbation theory.
Reconstruction of the Spectral Function

- $G(\tau, \vec{p}) = \int_{0}^{\infty} d\omega \sigma(\omega, T) K(\omega, \tau, T)$

- $O(10)$ data and $O(100)$ degrees of freedom to reconstruct.

 - Bayesian technique: find $\sigma(\omega, T)$ that maximizes $P[\sigma|DH]$.
 - D data
 - H prior knowledge: $\sigma(\omega, T) > 0$

Maximum Entropy Method: Asakawa, Hatsuda, Nakahara, PRD 60 (99) 091503, Prog. Part. Nucl. Phys. 46 (01) 459

$$P[\sigma|DH] = \exp\left(-\frac{1}{2}\chi^2 + \alpha S\right)$$ (3)

Shannon-Janes entropy: $S = \int d\omega \left[\sigma(\omega) - m(\omega) - \sigma(\omega) \ln\left(\frac{\sigma(\omega)}{m(\omega)}\right) \right]$, $m(\omega)$ - the default model, $m(\omega \gg \Lambda_{QCD}) = m_0 \omega^2$ - perturbation theory.
Reconstruction of the Spectral Function

- $G(\tau, \vec{p}) = \int_0^\infty d\omega \sigma(\omega, T) K(\omega, \tau, T)$
- $O(10)$ data and $O(100)$ degrees of freedom to reconstruct.
- Bayesian technique: find $\sigma(\omega, T)$ that maximizes $P[\sigma|DH]$.
 - D data
 - H prior knowledge: $\sigma(\omega, T) > 0$

Maximum Entropy Method: Asakawa, Hatsuda, Nakahara, PRD 60 (99) 091503, Prog. Part. Nucl. Phys. 46 (01) 459

$$P[\sigma|DH] = \exp\left(-\frac{1}{2}\chi^2 + \alpha S\right)$$

Shannon-Janes entropy: $S = \int d\omega \left[\sigma(\omega) - m(\omega) - \sigma(\omega) \ln\left(\frac{\sigma(\omega)}{m(\omega)}\right) \right]$

$m(\omega)$ - the default model, $m(\omega \gg \Lambda_{QCD}) = m_0 \omega^2$ - perturbation theory.
Reconstruction of the Spectral Function

- $G(\tau, \vec{p}) = \int_0^\infty d\omega \sigma(\omega, T) K(\omega, \tau, T)$
- $O(10)$ data and $O(100)$ degrees of freedom to reconstruct.
- Bayesian technique: find $\sigma(\omega, T)$ that maximizes $P[\sigma | DH]$.
 - D data
 - H prior knowledge: $\sigma(\omega, T) > 0$

Maximum Entropy Method: Asakawa, Hatsuda, Nakahara, PRD 60 (99) 091503, Prog. Part. Nucl. Phys. 46 (01) 459

$$P[\sigma | DH] = \exp\left(-\frac{1}{2}\chi^2 + \alpha S\right) \quad (3)$$

Shannon-Janes entropy: $S = \int d\omega \left[\sigma(\omega) - m(\omega) - \sigma(\omega) \ln\left(\frac{\sigma(\omega)}{m(\omega)}\right) \right]$, $m(\omega)$ - the default model, $m(\omega \gg \Lambda_{QCD}) = m_0 \omega^2$ - perturbation theory.
Anisotropic lattice $\xi = a_s/a_\tau = 2$ and 4.

Standard Wilson action in the gauge sector and the anisotropic clover improved (Fermilab) action for heavy fermions. Quenched approximation. Sommer scale to fix the physical units.
<table>
<thead>
<tr>
<th>β</th>
<th>5.7</th>
<th>5.9</th>
<th>6.1</th>
<th>6.1</th>
<th>6.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_s^2 \times N_t$</td>
<td>$8^3 \times 64$</td>
<td>$16^3 \times 64$</td>
<td>$16^3 \times 64$</td>
<td>$16^3 \times 96$</td>
<td>$24^3 \times 160$</td>
</tr>
<tr>
<td>(ξ, ξ_0)</td>
<td>$(2,1.655)$</td>
<td>$(2,1.691)$</td>
<td>$(2,1.718)$</td>
<td>$(4,3.211)$</td>
<td>$(4,3.3166)$</td>
</tr>
<tr>
<td>r_0/a_s</td>
<td>2.414(8)</td>
<td>3.690(11)</td>
<td>5.207(29)</td>
<td>5.189(21)</td>
<td>8.96(4)</td>
</tr>
<tr>
<td>L_s [fm]</td>
<td>1.66</td>
<td>2.17</td>
<td>1.54</td>
<td>1.54</td>
<td>1.34</td>
</tr>
<tr>
<td>configs</td>
<td>2000</td>
<td>1560</td>
<td>930</td>
<td>500</td>
<td>160</td>
</tr>
</tbody>
</table>

Table: Simulation parameters for charmonium at zero temperature.
Charmonium: $T = 0$

Figure: Charmonium spectral function in the pseudoscalar channel (left) and the scalar channel (right) at different lattice spacings and zero temperature.
Figure: Charmonium spectral function dependence on the default model (left) and on the maximum time extend (right). Pseudoscalar channel at $a_t^{-1} = 14.12\, GeV$ and zero temperature.
Charmonium: \(T > 0 \)

\[
G_{\text{recon}}(\tau, T) = \int_0^\infty d\omega \sigma(\omega, T = 0) K(\tau, \omega, T)
\]
Figure: The ratio $G(\tau, T)/G_{\text{recon}}(\tau, T)$ of charmonium for pseudoscalar channel at $a_t^{-2} = 8.18$ and 14.11GeV at different temperatures.
Figure: The ratio $G(\tau, T)/G_{\text{recon}}(\tau, T)$ of charmonium for scalar channel at $a_t^{-2} = 8.18$ and 14.11GeV at different temperatures.
Figure: The ratio $G(\tau, T)/G_{\text{recon}}(\tau, T)$ of charmonium for vector channel at $a_t^{-2} = 8.18$ and 14.11GeV at different temperatures.
Figure: Charmonium spectral function in the pseudoscalar channel at $a_t^{-2} = 14.11\text{GeV}$ (left) and the scalar channel (right) at $a_t^{-2} = 8.18\text{GeV}$ at zero and above deconfinement temperatures. For finite temperature scalar channel two different default models are shown.
Bottomonium

Figure: Bottomonia correlators (left) and spectral functions (right) in pseudo-scalar channel for different temperatures.
Figure: Bottomonia correlators (left) spectral functions (right) in scalar channel for different temperatures.
The $1S (\eta_c, J/\psi)$ charmonium states exist as a resonance in the deconfined phase at $T \approx 1.5 T_c$.

$1P (\chi_{c0}, \chi_{c1})$ charmonium states dissolve at $1.1 T_c$.

Bottomonium states show similar behavior.

The emerging studies of heavy quarkonium properties with dynamical fermions produce consistent results with the quenched approximation.
Summary

- The $1S (\eta_c, J/\psi)$ charmonium states exist as a resonance in the deconfined phase at $T \simeq 1.5 T_c$.
- $1P (\chi_{c0}, \chi_{c1})$ charmonium states dissolve at $1.1 T_c$.
- Bottomonium states show similar behavior.
- The emerging studies of heavy quarkonium properties with dynamical fermions produce consistent results with the quenched approximation.
The $1S$ (η_c, J/ψ) charmonium states exist as a resonance in the deconfined phase at $T \simeq 1.5 T_c$.

$1P$ (χ_{c0}, χ_{c1}) charmonium states dissolve at $1.1 T_c$.

Bottomonium states show similar behavior.

The emerging studies of heavy quarkonium properties with dynamical fermions produce consistent results with the quenched approximation.
The $1S (\eta_c, J/\psi)$ charmonium states exist as a resonance in the deconfined phase at $T \sim 1.5 T_c$.

$1P (\chi_{c0}, \chi_{c1})$ charmonium states dissolve at $1.1 T_c$.

Bottomonium states show similar behavior.

The emerging studies of heavy quarkonium properties with dynamical fermions produce consistent results with the quenched approximation.