Resumming the Color-Octet Contribution to
\[e^+ e^- \rightarrow J/\psi + X \]

Sean Fleming
Carnegie Mellon University

In collaboration with
A. Leibovich (U. Pittsburgh) and T. Mehen (Duke U.)

The 2nd QWG Workshop on Heavy Quarkonium, Fermilab, September 20 to 22, 2003.
New Data from BaBar & Belle

($\sqrt{s} \approx 10.6$ GeV)

$\sigma_{\text{tot}} (\text{pb})$

<table>
<thead>
<tr>
<th>BaBar</th>
<th>2.52 ± 0.21 ± 0.21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belle</td>
<td>1.47 ± 0.10 ± 0.13</td>
</tr>
</tbody>
</table>

Angular distribution

$A(p)$

| $p \lesssim 3.5$ | 0.05 ± 0.22 | 1.5 ± 0.6 |
| $p \gtrsim 3.5$ | 0.7 ± 0.3 | 1.1 ± 0.4 |

$\frac{d\sigma}{dp\,d\cos\theta} = S(p)(1 + A(p)\cos^2\theta)$

Belle

$\frac{\sigma(e^+e^- \rightarrow J/\psi \, c\bar{c})}{\sigma(e^+e^- \rightarrow J/\psi \, X)} = 0.82 \pm 0.15 \pm 0.14$

K. Abe et al. EPS-ID 562
Contributed paper for 2003 Summer Conferences
http://belle.kek.jp
Theory

NRQCD Factorization Formalism

\[s = 0.73 \text{ pb} \]

\[s = 0.20 \text{ pb} \]

\[s = 0.79 \text{ pb} \]

\[s = 0.08 \text{ pb} \]

\[\square_{\text{tot}}^1 = 0.93 \text{ pb} \quad + \quad \square_{\text{tot}}^8 = 0.87 \text{ pb} \quad \rightarrow \quad \square_{\text{tot}} = 1.8 \text{ pb} \]

\[\frac{\square(e^+e^- \rightarrow J/\Psi c\bar{c})}{\square(e^+e^- \rightarrow J/\Psi X)} = 0.1 \]
Differential Distribution

\[\frac{d^3 \sigma}{d \phi \, d \Delta \phi \, d \lambda} = \frac{C}{(1 - z)^3} \left(\frac{z}{\Delta \phi} \right) \left(\frac{z(1 - z)}{\phi} \right) \]

\[z = \frac{E}{E_{\text{beam}}} \]

BaBar

S. Baek et al.,
33, 97 (1998)

Belle

E. Braaten and Y.Q. Chen,
Angular Distribution

$A(p_y)$

- **Belle**
- **BaBar**

Color-Singlet

Color-Octet

Recap:

- Total Cross Measurement $\sim 1.5/2.5$ pb
- Color-Singlet under-predicts ~ 1.0 pb
- Color-Octet contribution ~ 0.8 pb: theoretical cross section is in line with experiment
- Experimental evidence is that Angular Dependence increases to 1 as Psi momentum reaches Max.
- Color-Singlet $\rightarrow -1$ as momentum reaches Max.
- Color-Octet is ~ 1 only near Max. momentum
Conclusions?

- Color-Octet is needed to explain the total cross-section
- Data on $A(p)$ suggests the octet contribution is not confined to the endpoint, but is spread over a broad range of momentum
- The $\frac{d}{dz}(1-z)$ does not make sense
- Smeared out by both perturbative and non-perturbative aspects of soft radiation
 BUT how do we treat this?!?!?!
More Trouble?

Compare what happens to the leading singlet and octet contribution as we approach the endpoint:

<table>
<thead>
<tr>
<th></th>
<th>Singlet</th>
<th>Octet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrate over full kinematic region</td>
<td>ν^3</td>
<td>ν^7</td>
</tr>
<tr>
<td>Behavior of distribution near endpoint</td>
<td>Constant</td>
<td>$\Box(1 - z)$</td>
</tr>
<tr>
<td>Integrate over endpoint region $\sim \nu^2$</td>
<td>ν^5</td>
<td>ν^7</td>
</tr>
</tbody>
</table>

Power Counting Changes!
Kinematics: CM frame

\[p_{c\bar{c}}^\mu = M v^\mu + \ell^\mu \]

\[p_X^\mu = \frac{\sqrt{s}}{2} \left[\left(1 - \frac{r}{x} \right) n^\mu + (1 - x) \bar{n}^\mu \right] - \ell^\mu \]

\[r = 4m_c^2/s \quad x = (E + p)/\sqrt{s} \quad n^\mu = (1,0,0,1) \quad \bar{n}^\mu = (1,0,0,-1) \]

endpoint

\[x \to 1 \quad p_X^\mu \to \frac{\sqrt{s}}{2} (1 - r) n^\mu \quad p_X^2 \to (1 - r)(s(1 - x) - n \cdot \ell) \sim \sqrt{s} \Box_{QCD} \]

In the endpoint region, \(p_X^\mu \) is a collinear momentum.
NRQCD does not account for this.
Soft Collinear Effective Theory

Effective Field Theory of collinear particles interacting with soft degrees of freedom

"brown muck"

Analogous to HQET: Effective Field Theory of Heavy particles interacting with and soft degrees of freedom

("brown muck")
In the Endpoint Region use SCET for the Fast & Light Particles and NRQCD for the Quarkonium Meson.
NRQCD factorization does not hold near the endpoint: New factorization formula

\[
\frac{d\pi}{dz} = P(r, z) \pi_0 \int_z^1 d\pi S(\pi; \mu) J(\pi - z; \mu)
\]

\[
z = \frac{E_{\pi}}{E_{\max}} \quad P(r, z) = \frac{\sqrt{(1 + r)^2 z^2 - 4r}}{1 - r}
\]

\[
\pi_0(8, ^1S_0) = \frac{32 \pi_0^2 \pi_0^2 e_c^2}{3s^2} \frac{\langle O_8^\uparrow (1S_0) \rangle}{m_c} (1 - r)
\]

Jet function: perturbatively calculable in \(\pi_s \left(\sqrt{sQCD/mc} \right) \)

\[
\rightarrow \quad \pi(\pi - z)
\]

Shape function

\[
S(\pi) = M \frac{1 + r}{1 - r} \frac{\langle 0 | T^A a_\pi^\dagger a_\pi (\pi - in \cdot \hat{D}) a_\pi^\dagger T^A \pi | 0 \rangle}{4m_c \langle O_8^\uparrow (1S_0) \rangle}
\]

Nonperturbative function
Summing Logarithms

At higher orders in the perturbative expansion one encounters

\[\frac{\log(1 - z)}{1 - z} \]

Integrating within the endpoint \(\rightarrow \log^2 \frac{\Box}{\Box} \)

Sudakov logarithms are summed using the renomalization group in SCET

Summing logs and expanding the jet function to leading order:

\[
\frac{d \Box^{(8,1S_0)}}{dz} = - \int_z^1 \frac{d \Box}{\Box} P[r, z] \Box^{(8,1S_0)}_0 S^{(8,1S_0)} (\Box)
\]

\[
z \frac{d}{dz} \left\{ \Box (\Box - z) \frac{\exp [lg_1 [\Box_s \Box_0 l/(4\Box)] + g_2 [\Box_s \Box_0 l/(4\Box)]]}{\Box [1 - g_1 [\Box_s \Box_0 l/(4\Box)] - \Box_s \Box_0 l/(4\Box) g'_1 [\Box_s \Box_0 l/(4\Box)]]} \right\}
\]
Phenomenology

Model for the shape function

\[f(\hat{\ell}^+) = \frac{1}{\bar{L}} \frac{a^{ab}}{(ab)} (x - 1)^{ab-1} e^{-a(x-1)} \quad x = \frac{\hat{\ell}^+}{\bar{L}} \]

The Nth moment scales as \(O((mv^2)^N) \)

\[
\begin{align*}
 m_0 &= \int d\hat{\ell}^+ f(\hat{\ell}^+) = 1, \\
 m_1 &= \int d\hat{\ell}^+ \hat{\ell}^+ f(\hat{\ell}^+) = \bar{\square} (b + 1), \\
 m_2 &= \int d\hat{\ell}^+ (\hat{\ell}^+)^2 f(\hat{\ell}^+) = \bar{\square}^2 \left(\frac{b}{a} + (b + 1)^2 \right) \\
\end{align*}
\]

Choose

\[m_1 = 890 \text{ MeV} \quad m_2 = (985 \text{ MeV})^2 \]
Endpoint: \(z \gtrsim 0.7 \sim 1 - v^2 \)
Comparison to BaBar Data

Endpoint:

\[z \gtrsim 0.7 \sim 1 - v^2 \]

\[z = \frac{E_{\square}}{E_{\text{max}}} \]

\[p \gtrsim \sqrt{(0.7E_{\text{max}})^2 - M_{\square}^2} \gtrsim 2.57 \text{ GeV} \]

Comparison to Belle

Different normalization: all else same

Angular Distribution

$A(p_\psi)$ vs. p_ψ

- Belle
- BaBar
Conclusions

- The color-octet contribution at the endpoint is needed to explain \square_{tot}

- Need to incorporate collinear physics to make color-octet contribution to $d\square/dp$ sensible

- Angular distribution is consistent with data

- There is still a big problem with $\frac{\square(e^+e^- \rightarrow J/\Psi cc)}{\square(e^+e^- \rightarrow J/\Psi X)}$

- A possible solution was proposed by B.L. Ioffe and D.E. Kharzeev

- My question: does factorization breakdown?!?!